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Abstract—Multi-view clustering refers to the task of partition-
ing numerous unlabeled multimedia data into several distinct
clusters using multiple features. In this paper, we propose a novel
nonlinear method called joint learning multi-view clustering
(JLMVC) to jointly learn kernel representation tensor and
affinity matrix. The proposed JLMVC has three advantages: (1)
unlike existing low-rank representation-based multi-view clus-
tering methods that learn the representation tensor and affinity
matrix in two separate steps, JLMVC jointly learns them both.
(2) using the “kernel trick”, JLMVC can handle nonlinear data
structures for various real applications. (3) different from most
existing methods that treat representations of all views equally,
JLMVC automatically learns a reasonable weight for each view.
Based on the alternating direction method of multipliers, an
effective algorithm is designed to solve the proposed model.
Extensive experiments on eight multimedia datasets demonstrate
the superiority of the proposed JLMVC over state-of-the-art
methods.

Index Terms—Multi-view clustering, low-rank tensor represen-
tation, kernel trick, affinity matrix, adaptive weight

I. INTRODUCTION

IN many real-world applications, multimedia data such as
images, videos, audio, and documents, are usually repre-

sented by different features or collected from various fields
(called multi-view data) [1–3]. For example, in multimedia
retrieval [2], images can be represented by color, textures, and
edges. In video surveillance [3], the same scene is monitored
by multiple cameras from different viewpoints. In natural
language processing [4], documents can be translated by
multiple different languages like Chinese, English, French, and
so on. Considering that multi-view data are greatly conducive
to the performance improvement, multi-view clustering has
attracted great research interests in many fields including mul-
timedia data mining, machine learning and pattern recognition
communities [5–8].

Given multi-view features extracted from the original multi-
media data, they are used to partition all unlabeled multimedia
data into several distinct clusters. Massive approaches for
clustering have been proposed. Either single-view clustering or
multi-view clustering, they usually follow two main steps: 1)
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constructing a symmetric affinity matrix (also called similarity
matrix) to describe the pairwise relations between multimedia
data points and 2) performing the spectral clustering algorithm
[9] to obtain clustering results. The core of these methods is
construction of the affinity matrix. This means that the quality
of the learned affinity matrix heavily determines the clustering
performance. In literature, two common schemes, the raw
multimedia features and computed representations [10, 11],
are selected to conduct the affinity matrix, leading to the
following three categories: 1) graph-based methods [12–18], 2)
subspace clustering-based methods [5–8, 11, 19–23], 3) their
combinations [10, 24, 25]. For example, due to simplicity and
effectiveness, k-Nearest Neighbor using cosine or heat kernel
distances [26] has become an intuitive way to construct the
affinity matrix. Following the idea that local connectivity of
multimedia data can be measured by the Euclidean distance,
the work in [12] constructed the affinity matrix by assigning
adaptive neighbors to each multimedia data point. In [13], Nie
et al. adopted the l1-norm distance instead of the Euclidean
distance and proposed a graph clustering relaxation. Based on
the fact that the affinity matrix should obey the block diagonal
property, Nie et al. [14] imposed the rank constraint on the
Laplacian matrix for graph-based clustering. To well explore
the complementary information of multi-view features, the
approaches in [16] and [17] extended the adaptive neighbor
strategy [12] and the rank constraint [14] from the single-
view setting into the multi-view one, respectively. Following
this, Wang et al. [18] pursued a unified affinity matrix from
the affinity matrices of all views and the rank function was
considered to partition multimedia data points into optimal
number of clusters. However, these graph-based approaches,
e.g., [16–18], usually construct the affinity matrix by directly
using the raw multimedia features which are often corrupted
by noise and outliers. Thus, they may obtain an unreliable and
inaccurate affinity matrix [10, 25].

As the second category, subspace clustering-based methods
have become the mainstream due to their excellent inter-
pretability and performance. The goal of subspace clustering
is to simultaneously find low-dimensional subspaces and par-
tition multimedia data points into multiple subspaces. Specifi-
cally, sparse subspace clustering (SSC) [20] and low-rank rep-
resentation (LRR) [19] are two representative works, resulting
in a local representation matrix and a global one, respectively.
Since SSC learns the representation matrix by l1-norm, it
imposes the sparsity on all entries of the representation matrix.
However, LRR conducts the representation matrix by the low-
rank regularizer. This imposes the sparsity on the singular
values. Beyond the low-rankness and sparsity, some extra
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Fig. 1. Comparison of existing low-rank tensor representation-based MVC
methods (the red dashed rectangle) and our proposed JLMVC (the blue dashed
rectangle). Existing methods construct the representation matrix (a) and the
affinity matrix (b) in two separate steps without considering their correlation.
JLMVC learns the representation tensor and the affinity matrix (d) in a unified
framework. Additionally, the kernel-induced mapping is adopted to map the
original multimedia data (usually nonlinear separable) into a new linear space.

structures underlying data, such as the local similarity structure
and nonnegativity, may not be fully considered. Instead of
the fixed dictionary, i.e., the original multimedia feature, the
work in [27] proposed to learn a locality-preserving dictionary
to capture the intrinsic geometric structure of the dictionary
for LRR. Yin et al. [25] proposed to integrate LRR and the
graph construction in a unified framework to learn an adaptive
low-rank graph affinity matrix. A similar idea was adopted in
[10, 24]. A major challenge is that, when handing multi-view
features, they may cause a significant performance degradation
since they focus only on single-view feature.

Recently, considerable efforts based on deep neural net-
work have been expended for clustering. For example, Ji
et al. [28] proposed a deep neural network by introduc-
ing a self-expressive layer into the auto-encoder framework
for clustering. To conduct a deep structure, the authors in
[29] adopted semi-nonnegative matrix factorization for mutli-
view clustering. In [30], a highly-economized scalable image
clustering method was proposed to cluster large-scale multi-
view images. Besides, to deal with multi-view clustering with
missing features, Chao et al. [31] presented an enhanced multi-
view co-clustering method. For a comprehensive survey on
clustering, please refer to [32] and the references therein.

A. Related work

The existing low-rank-based approaches for multi-view
clustering can be roughly grouped into two categories: two-
dimension matrix-based low-rank methods [5, 22, 33–38]

and three-dimension tensor-based low-rank ones [6–8]. For
example, to deal with multiple multimedia features, the work
in [33] proposed to concatenate all heterogeneous features and
then perform LRR [19]. Xia et al. [34] exploited the low-
rank and sparse matrix decomposition to uncover a shared
transition probability matrix under the Markov chain method.
Except for consistency among multi-view features, the work
in [36] took local view-specific information into consideration
for multi-view clustering. Similarly, Tang et al. [5] proposed a
multi-view clustering method by learning a joint affinity graph.
In [5, 36], the consistency measures the common properties
among all views while the specificity captures the inherent
difference in each view. Different from these approaches that
use the nuclear norm to depict the low-rank property of the
representation matrices, Wang et al. [22] proposed to factor-
ize each representation matrix as the product of symmetric
low-rank data-cluster matrices, such that the singular value
decomposition can be ignored. Following this, Liu et al. [38]
proposed to mine a consensus representation of all views by
multi-view non-negative matrix factorization.

The most representative methods of the second category
are the tensor unfolding-based method (LT-MSC) [6] and
t-singular value decomposition (t-SVD)-based one (t-SVD-
MSC) [7]. As shown in Fig. 1 (a), each representation matrix is
stored as the frontal slice of a tensor, resulting in a third-order
tensor (called representation tensor). The main difference
between [6] and [7] is the tensor rank approximation which
aims to explore the high order correlations among multi-views.
By organizing all multi-view features into a third-order tensor,
the work in [39] exploited the sparsity and tensor nuclear norm
penalty with self-expressiveness to construct the representation
tensor.

Although these approaches have achieved a great advance
for multi-view clustering, they may suffer from the following
challenges: 1) their performance may sharply degrade in real
applications when the multimedia data come from nonlinear
subspaces. The intuitive reason is that they were originally
designed to deal with the data that lie within multiple linear
subspaces [8, 40, 41]. 2) the correlation between the repre-
sentation tensor and affinity matrix may not be fully exploited
[42]. They learn the representation tensor via different low-
rank tensor representations, and then construct the affinity
matrix as shown in Figs. 1 (a) and (b) in two separate steps.
This means that the global optimal affinity matrix cannot be
ensured. 3) the importance of each view in the construction
of the affinity matrix is not considered. For example, methods
in [6, 7, 43] simply average all representation matrices with
the same weight. The approach in [43] overcomes the first
limitation, but fails to address the other two challenges. To
our best knowledge, no work has been done to address these
three challenges simultaneously.

B. Our contributions

To address above three challenges, we propose a unified
model to jointly learn the kernel representation tensor and
affinity matrix for multi-view clustering (JLMVC). JLMVC
learns the representation tensor and affinity matrix jointly
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such that their correlations can be well exploited, handles the
nonlinear multimedia data using a kernel-induced mapping,
and adopts the adaptive weight strategy to form a unified
affinity matrix. Fig. 1 compares the proposed JLMVC with
two state-of-the-art low-rank tensor representation-based MVC
methods LT-MSC [6] and t-SVD-MSC [7]. As can be observed
that, under the assumption that the original data lie within mul-
tiple linear subspaces, existing low-rank tensor representation-
based MVC methods learn the representation tensor from the
original multimedia data. However, this assumption may not be
ensured in real applications. To achieve nonlinear multi-view
clustering, JLMVC maps the original multimedia data from
the input data space into a new feature space such that the
mapped data points can reside in multiple linear subspaces,
as shown in the middle of Fig. 1 (c). JLMVC then learns
the representation tensor and affinity matrix simultaneously.
Finally, the learned unified affinity matrix is fed to the input
of the spectral clustering algorithm [9] to obtain the clustering
results.

The contributions and novelty of this paper are summarized
as follows:
• We propose a joint learning multi-view clustering

(JLMVC) model to jointly learn kernel representation ten-
sor and affinity matrix for multi-view clustering. JLMVC
is able to well explore the correlation between the repre-
sentation tensor and affinity matrix, handles the nonlinear
data using a kernel-induced mapping, and adopts the
adaptive weight strategy to form a unified affinity matrix.

• JLMVC uses the tensor nuclear norm to encode the low
rank property of the representation tensor and adaptively
learns different weights for different views’ representation
matrices. This greatly benefits the construction of the
unified affinity matrix.

• An effective algorithm is designed to solve the JLMVC
model via the alternating direction method of multipli-
ers. Extensive experiments on eight popular multimedia
datasets are conducted and validate the superiority of
JLMVC over ten state-of-the-art approaches.

C. Organization of the paper

The rest of this paper is structured as follows. Section II
introduces some notations and preliminaries, especially the t-
SVD-based tensor nuclear norm which is used to depict the
low-rank property of the representation tensor. In Section III,
we introduce JLMVC and design an iterative algorithm under
the alternating direction method of multipliers framework. We
evaluate the performance of the proposed JLMVC on eight
real-world multi-view datasets in Section IV and conclude the
whole paper in Section V.

II. NOTATIONS AND PRELIMINARIES

In this section, we aim to introduce some notations used
throughout this paper and the t-SVD-based tensor nuclear
norm (see Definition 2.2) that will be used to depict the
low-rank property of the representation tensor. Some basic
notations are summarized in Table I.

TABLE I
Basic notations and their descriptions.

Notation Meaning
X , X , x tensor, matrix, vector
X (k) the k-th frontal slice of tensor X
X̂ = fft(X , [], 3) fast Fourier transformation along tube fiber
n, V the number of samples, views
dv feature dimension of the v-th view
X(v) ∈ Rdv×n feature matrix of the v-th view
Z ∈ Rn×n×V the representation tensor
S ∈ Rn×n the affinity matrix
E(v) ∈ Rdv×n the sample-specific corruptions
‖ · ‖2,1, ‖ · ‖F l2,1-norm, Frobenius norm
‖ · ‖~, ‖ · ‖∞ t-SVD-nuclear norm, infinity norm
R, H the real space, the kernel Hilbert space
K(v) ∈ Rn×n the kernel matrix

Before the definition of t-SVD [44], several operators are
first introduced. For a tensor X ∈ Rn1×n2×n3 , its block
circular matrix bcirc(X ) and block diagonal matrix bdiag(X )
are defined as

bcirc(X ) =


X (1) X (n3) · · · X (2)

X (2) X (1) · · · X (3)

...
...

. . .
...

X (n3) X (n3−1) · · · X (1)

 ,

bdiag(X ) =


X (1)

X (2)

. . .
X (n3)

 .
The block vectorization is defined as bvec(X ) =
[X (1); · · · ;X (n3)]. The inverse operations of bvec and
bdiag are defined as bvfold(bvec(X )) = X and
bdfold(bdiag(X )) = X , respectively. Let Y ∈ Rn2×n4×n3 .
The t-product X ∗ Y is an n1 × n4 × n3 tensor, X ∗ Y =
bvfold(bcirc(X ) ∗ bvec(Y)). The transpose of X is X T ∈
Rn2×n1×n3 by transposing each of the frontal slices and then
reversing the order of transposed frontal slices 2 through n3.
The identity tensor I ∈ Rn1×n1×n3 is a tensor whose first
frontal slice is an n1 × n1 identity matrix and the rest frontal
slices are zero. A tensor X ∈ Rn1×n1×n3 is orthogonal if it
satisfies X T ∗ X = X ∗ X T = I.

Fig. 2. The t-SVD of a tensor of size n1 × n2 × n3.

Definition 2.1: (t-SVD) Given X , its t-SVD is defined as

X = U ∗ G ∗ VT ,

where U ∈ Rn1×n1×n3 and V ∈ Rn2×n2×n3 are orthogonal
tensors, G ∈ Rn1×n2×n3 is an f-diagonal tensor. Each of its
frontal slices is a diagonal matrix.
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Fig. 2 shows the t-SVD of a third-order tensor. The t-SVD-
based tensor nuclear norm (t-SVD-TNN) is given as follows.

Definition 2.2: (t-SVD-TNN) The t-SVD-TNN of a tensor
X ∈ Rn1×n2×n3 , denoted as ‖X‖~, is defined as the sum of
singular values of all the frontal slices of X̂ , i.e.,

‖X‖~ =

min{n1,n2}∑
i=1

n3∑
k=1

|Ĝ(i, i, k)|. (1)

III. JOINT LEARNING MULTI-VIEW CLUSTERING

In this section, we first elaborate the proposed JLMVC
model in Section III-A, and then solve this model by the al-
ternating direction method of multipliers (ADMM) in Section
III-B. Considering that, in real world applications, the multi-
media data may be drawn from multiple nonlinear subspaces,
JLMVC first uses the kernel trick to solve the nonlinearity.
Based on the self-expression property [19, 20], JLMVC carries
out joint learning of the representation tensor and unified
affinity matrix.

A. Problem formulation

The existing multi-view clustering method t-SVD-MSC [7]
learns the representation tensor Z by

min
Z,E
‖Z‖~ + α

V∑
v=1

‖E(v)‖2,1

s.t. X(v) =X(v)Z(v)+E(v), v = 1, · · · , V,
Z=Φ(Z(1), Z(2), · · · , Z(V )).

(2)

where X(v) ∈ Rdv×n denotes the v-th view feature; α > 0
is the regularization parameter; E denotes noise and outliers;
Φ(·) is an operator to stack all representation matrices {Z(v)}
into a third-order tensor Z as shown in Fig. 1 (a).

Once Z is yielded by Eq. (2), the affinity matrix S is
constructed by averaging all frontal slices of Z . This means
that, in the construction of S, the correlation between S and
Z is fixed. This scheme, however, may not ensure the opti-
mal affinity matrix since different view features characterize
specific and partly independent information of the dataset.
Therefore, to address this issue, different weights should be
assigned on different views. Then we give the following
model:

min
Z,S,ω

‖Z‖~ +
V∑
v=1

(
α‖X(v) −X(v)Z(v)‖2,1+

λω(v)‖Z(v) − S‖2F
)

+ η‖ω‖22

s.t. Z=Φ(Z(1), Z(2), · · · , Z(V )), ω≥0,Σvω
(v) =1,

(3)

where α, λ and η are three positive parameters to balance the
contributions of all terms in the objective function; ω(v) is the
relative weight of the v-th view; the last term is to smoothen
the weight distribution and avoid the futile solution. However,
in model (3), the self-expression property is encoded on the
original input data space (i.e., the second term). This usually
exhibits the nonlinear structure in real-world datasets. Here,
we seek new feature spaces for the linear separated multi-
view clustering. Borrowing the idea of the kernel methods

[40, 41], for the v-th feature, let φ(v) : Rdv → H(v) be a kernel
mapping from the original data space to the kernel space. As
stated in the following Eq. (6), φ(v) does not need to be defined
explicitly. Let K(v) ∈ Rn×n be a positive kernel Gram matrix,
i.e.,

K(v) = φ(v)(X(v))Tφ(v)(X(v)). (4)

Then, we encode the self-expression property on the new
feature space. This is also the reason that the proposed JLMVC
can handle the nonlinearity problem. Based on the above
analysis, model (3) can be formulated as

min
Z,S,ω

‖Z‖~ +
V∑
v=1

(
α‖φ(X(v))− φ(X(v))Z(v)‖2,1+

λω(v)‖Z(v) − S‖2F
)

+ η‖ω‖22

s.t. Z=Φ(Z(1), Z(2), · · · , Z(V )), ω≥0,Σvω
(v) =1.

(5)

Note that the second term of Eq. (5) can be rewritten as

‖φ(X(v))− φ(X(v))Z(v)‖2,1

=
n∑
i=1

(
P

(v)T

i K(v)P
(v)
i

) 1
2 ,

(6)

where P (v) = I − Z(v). P (v)
i is the i-th column of P (v).

From Eq. (6), it is easy to see that the kernel mapping
φ(v) appears only in the form of the inner product, i.e.,
φ(v)(X(v))Tφ(v)(X(v)), leading to the kernel Gram matrix
K(v). Therefore, φ(v) is implicitly defined. For simplicity,
we denote g(v)(P (v)) =

∑n
i=1

(
P

(v)T

i K(v)P
(v)
i

) 1
2 to be the

reconstruction error in the kernel space. Finally, the proposed
JLMVC model can be formulated as

min
Z,P (v),S,ω

‖Z‖~ +

V∑
v=1

(
αg(v)

(
P (v)

)
+

λω(v)‖Z(v) − S‖2F
)

+ η‖ω‖22

s.t. Z = Φ(Z(1), Z(2), · · · , Z(V )),
P = Φ(P (1), P (2), · · · , P (V )),
P = I − Z, ω≥0, Σvω

(v) = 1,

(7)

where the first term, i.e., ‖Z‖~ defined in Eq. (1), is used to
explore the low-rankness of Z; the second term can handle the
nonlinear structures; the third term with the adaptive weight
strategy aims to learn a unified affinity matrix S.

B. Optimization

It is intractable to solve the proposed model in Eq. (7) since
it is not jointly convex and coupled with respect to variable
Z . Therefore, we solve Eq. (7) under ADMM framework. We
can reformulate Eq. (7) as:

min
Z,Y,P,S,ω

‖Y‖~+
V∑
v=1

(
αg(v)

(
P (v)

)
+

λω(v)‖Z(v) − S‖2F
)

+ η‖ω‖22
s.t. Z = Φ(Z(1), Z(2), · · · , Z(V )),
P = Φ(P (1), P (2), · · · , P (V )),
P = I − Z, ω ≥ 0, Σvω

(v) = 1, Z = Y.

(8)
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Following the idea of ADMM, we introduce one auxiliary
variable Y to separate Z in the objective function and then
iteratively update each variable by fixing other variables [45,
46]. The augmented Lagrangian function is defined as the sum
of the objective function of Eq. (8) and the penalty term under
the l2-norm. The augmented Lagrangian function of model (8)
is given by:

Lρ(Z,Y, P (v), S, ω; Θ,Π) = ‖Y‖~ +
V∑
v=1

(
αg(v)

(
P (v)

)
+

λω(v)‖Z(v)−S‖2F
)

+ η‖ω‖22+〈Θ, I − Z − P〉+

ρ

2
‖I−Z−P‖2F + 〈Π,Z − Y〉+

ρ

2
‖Z − Y‖2F ,

(9)

where Θ and Π are the Lagrange multipliers of size n× n×
V ; ρ is the non-negative penalty parameter; 〈·, ·〉 is the inner
product. Under the ADMM framework, we can solve Eq. (9)
by optimizing one variable while keeping the other variables
fixed as follows:

Step 1 Update Z: Fixing other variables, we can update Z
by the following subproblem:

min
Z

V∑
v=1

λω
(v)
k ‖Z

(v) − Sk‖2F +

ρk
2
‖I − Z − Pk +

Θk

ρk
‖2F +

ρk
2
‖Z−Yk+

Πk

ρk
‖2F .

(10)

It is easy to see that updating each frontal slice Z(v) of Z is
independent. This means that Z(v) can be updated in parallel.
The v-th subproblem is

min
Z(v)

λω
(v)
k ‖Z

(v) − Sk‖2F +

ρk
2
‖Z(v) −A(v)

k ‖
2
F +

ρk
2
‖Z(v) −B(v)

k ‖
2
F ,

(11)

where A(v)
k = I − P (v) +

Θ
(v)
k

ρk
and B(v)

k = Y
(v)
k − Π

(V )
k

ρk
. By

setting the derivative of Eq. (11) with respect to Z(v) to zero,
the optimal solution Z(v)

k+1 is

Z
(v)
k+1 =

(
2λω

(v)
k Sk+ρkA

(v)
k +ρkB

(v)
k

)
/(2λω

(v)
k +2ρk). (12)

Step 2 Update Y: When other variables are fixed, Y can
be updated by

min
Y
‖Y‖~ +

ρk
2
‖Y − Fk‖2F , (13)

where Fk = Zk+1 + Πk
ρk

. Following [7], we rotate Y from size
n× n× V to n× V × n as shown in Fig. 3. The first reason
is that, as in Eq. (1), t-SVD-TNN performs SVD on each
frontal slice of Ŷ to capture the “spatial-shifting” correlation
[44, 47]. This means that t-SVD-TNN preserves only the low-
rank property of intra-view. However, we hope to capture the
low-rank property of inter-views. The second reason is that
the rotation operation can significantly reduce the computation
cost [7]. After the rotation operation, each frontal slice of Ŷ
represents the view-specific self-representation matrix.

Fig. 3. Explanation of rotation.

The closed-form solution of Eq. (13) can be obtained by
the tensor tubal-shrinkage operator [7, 48]:

Yk+1 = C V
ρk

(Fk) = U ∗ C V
ρk

(G) ∗ VT , (14)

where Fk = U ∗ G ∗ VT , and C V
ρk

(G) = G ∗ J , in which J
is an f-diagonal tensor whose diagonal element in the Fourier
domain is J (i, i, k) = max{1− V/ρk

G(i,i,k) , 0}.
Step 3 Update P: With other variables fixed, we minimize

the augmented Lagrangian function in Eq. (9) with respect to
P:

min
P

V∑
v=1

αg(v)
(
P (v)

)
+
ρk
2
‖I−Zk+1−P+

Θk

ρk
‖2F . (15)

Similar to Eq. (10), updating P (v) is also independent:

min
P (v)

αg(v)
(
P (v)

)
+
ρk
2
‖P (v) −D(v)

k ‖
2
F , (16)

where D(v)
k = I−Z(v)

k+1 +
Θ

(v)
k

ρk
. Compared with the method in

[40] which uses l2-norm to measure the reconstruction error,
it is more difficult to solve Eq. (16) since g(v) is convex but
non-smooth. According to [41], the i-th column of the optimal
solution of Eq. (16) p(v)

i is

p
(v)
i =

{
p̂(v), if ‖[1/σ(v)

1 , · · ·, 1/σ(v)
r ] ◦ t(v)

u ‖ > 1/τ ;

c
(v)
i − V

(v)
K t

(v)
u , otherwise.

(17)

where τ = ρk
α ; ◦ is the element multiplication operator;

K(v) = V (v)Σ(v)2V (v)T is the singular value decomposition
of K(v); Σ(v) = diag(σ

(v)
1 , · · · , σ(v)

r , 0, · · · , 0) and r is the
rank of K(v); V (v)

K is constructed by the first r columns of
V (v); t(v)

u = V
(v)
K c

(v)
i ; p̂(v) is defined as

p̂(v) = c
(v)
i − V

(v)
K

(
[

σ
(v)2
1

γ(v) + σ
(v)2
1

, · · · , σ
(v)2
r

γ(v) + σ
(v)2
r

]T ◦ t(v)
u

)
,

(18)
where γ(v) > 0 is a scalar, and it satisfies

t(v)T

u diag({ σ
(v)2
i

(γ(v) + σ
(v)2
i )2

}1≤i≤r)t(v)
u = 1/τ2. (19)

We can obtain a unique root γ(v) when ‖[1/σ(v)
1 , · · ·, 1/σ(v)

r ]◦
t
(v)
u ‖ > 1/τ .
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Step 4 Update S: When keeping other variables fixed, we
obtain the following optimization problem:

Sk+1 = arg min
S

V∑
v=1

ω
(v)
k ‖Z

(v)
k+1 − S‖

2
F ,

=
V∑
v=1

ω
(v)
k Z

(v)
k+1.

(20)

The last equation is based on the fact that
∑
v ω

(v)
k = 1.

Step 5 Update ω: To obtain the adaptive weights ωk+1, we
minimize the augmented Lagrangian function in Eq. (9) with
respect to ω:

ωk+1 = arg min
ω

V∑
v=1

ω(v)‖Z(v)
k+1 − Sk+1‖2F + η‖ω‖22,

s.t. ω ≥ 0,
∑
v

ω(v) = 1.

(21)

Actually, Eq. (21) is a quadratic programming problem

ωk+1 = arg min
ω
‖ω +

gk
2η
‖22,

s.t. ω ≥ 0,
∑
v

ωv = 1.
(22)

where gvk = ‖Z(v)
k+1 − Sk+1‖2F forms the vector gk. We adopt

the off-the-shelf quadratic programming solver to solve the
above problem.

Step 6 Update Θ, Π, and ρ: The Lagrangian multipliers
Θ, Π and the penalty parameter ρ are updated by

Θk+1 = Θk + ρk(I − Zk+1 − Pk+1);

Πk+1 = Πk + ρk(Zk+1 − Yk+1);

ρk+1 = min{β ∗ ρk, ρmax},
(23)

where β ∈ [0,
√

5+1
2 ] is a step length to update the penalty

parameter ρ in each iteration [49]. ρmax is the maximum value
of the penalty parameter ρ.

The details of the proposed algorithm for solving the
JLMVC model are summarized in Algorithm 1. Algorithm 1
can be terminated when the following convergence condition
is satisfied

max

{
‖I − Z(v)

k+1 − P
(v)
k+1‖∞, v = 1, · · · , V

‖Zk+1 − Yk+1‖∞

}
≤ tol, (24)

where tol > 0 is a pre-defined tolerance.
Several notes regarding Algorithm 1 are given below to

further understand the proposed JLMVC.
• The weights of different views are of importance to the

construction of the affinity matrix. An intuitive way to ini-
tialize weights of different views is set each weight to be
ω

(v)
1 = 1

V . Then, weights are updated in an adaptive man-
ner by Eq. (22). Other variables Y1, Z1, S1, Θ1, Π1

are initialized to 0.
• Lines 3-6 of Algorithm 1 can be performed in parallel as

subproblems (11) and (16) are independent with respect
to Z(v) and P (v), respectively.

• After performing Algorithm 1, we can obtain the unified
affinity matrix S which well inherits the advantage of the

Algorithm 1 JLMVC for multi-view clustering

Input: multi-view features: {X(v)}; parameters: α, λ;
Initialize: Y1, Z1, S1, Θ1, Π1 initialized to 0; weight

ω
(v)
1 = 1

V ; η = 500, ρ1 = 10−3, β = 1.5, ε = 10−7,
k = 1;

1: Calculate the v-th kernel matrix K(v) by Eq. (4) (v =
1, · · · , V );

2: while not converged do
3: for v = 1 to V do
4: Update Z(v)

k+1 by Eq. (12);
5: Update P (v)

k+1 by Eq. (17);
6: end for
7: Update Yk+1 by Eq. (14);
8: Update Sk+1 by Eq. (20);
9: Update ωk+1 by Eq. (22);

10: Update Θk+1, Πk+1, and ρk+1 by Eq. (23);
11: Check the convergence condition in Eq. (24);
12: end while
Output: Affinity matrix Sk+1.

representation tensor Z . Finally, the learned affinity ma-
trix S serves as the input of spectral clustering algorithm
[9] to yield the clustering results.

IV. EXPERIMENTAL RESULTS

In this section, we aim to evaluate the performance of
JLMVC on eight multimedia datasets. The model analysis is
also reported.

A. Experimental settings

Our experiments select eight multimedia datasets for multi-
view clustering, including four face image datasets, two scene
datasets, one prokaryotic dataset, and one article data. The
details of each dataset are listed as follows:

Dataset descriptions: Yale (http://cvc.yale.edu/projects/
yalefaces/yalefaces.html): it consists of 165 gray-scale images
of 15 individuals with different facial expressions and con-
figurations. Following [6, 7], 4096d (dimension, d) Intensity,
3304d LBP, and 6750d Gabor are extracted as three multi-
view features; Extended YaleB (http://vision.ucsd.edu/∼leekc/
ExtYaleDatabase/ExtYaleB.html): it contains 2414 face im-
ages of 38 individuals, each of which has 64 near frontal
images under different lighting conditions. Similar to [6, 7],
the first 10 classes are selected and three types of features,
including 2500d Intensity, 3304d LBP, and 6750d Gabor, are
extracted; ORL (http://www.uk.research.att.com/facedatabase.
html): it includes 400 face images with 40 clusters under
different times, lighting, facial expressions, and facial details;
Prokaryotic phyla: it contains 551 prokaryotic species de-
scribed by textual data and different genomic representations.
Wikipedia (http://lig-membres.imag.fr/grimal/data.html): it is
an article dataset selected by Wikipedia editors since 2009. 693
documents with 2 views are selected; COIL-20 (http://www.
cs.columbia.edu/CAVE/software/softlib/): COIL 20 contains
1440 images of 20 object categories. Three view features
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TABLE II
CLUSTERING RESULTS (MEAN±STANDARD DEVIATION) ON THREE FACE IMAGE DATASETS.

Data Method ACC NMI AR F-score Precision Recall

Extended
YaleB (α =
0.3, λ =
0.1)

SSCbest 0.587±0.003 0.534±0.003 0.430±0.005 0.487±0.004 0.451±0.002 0.509±0.007
LRRbest 0.615±0.013 0.627±0.040 0.451±0.002 0.508±0.004 0.481±0.002 0.539±0.001
MLAP 0.278±0.002 0.231±0.002 0.119±0.002 0.207±0.001 0.204±0.001 0.211±0.001
DiMSC 0.615±0.003 0.636±0.002 0.453±0.005 0.504±0.006 0.481±0.004 0.534±0.004
LT-MSC 0.626±0.010 0.637±0.003 0.459±0.030 0.521±0.006 0.485±0.001 0.539±0.002
MLAN 0.346±0.011 0.352±0.015 0.093±0.009 0.213±0.023 0.159±0.018 0.321±0.013
ECMSC 0.783±0.011 0.759±0.012 0.544±0.008 0.597±0.010 0.513±0.009 0.718±0.006

t-SVD-MSC 0.652±0.000 0.667±0.004 0.500±0.003 0.550±0.002 0.514±0.004 0.590±0.004
HLR-M2VS 0.670±0.002 0.703±0.006 0.529±0.006 0.577±0.003 0.560±0.001 0.595±0.001

Kt-SVD-MSC 0.896±0.016 0.893±0.015 0.813±0.027 0.832±0.024 0.821±0.024 0.842±0.024
DMF-MVC 0.763±0.001 0.649±0.002 0.512±0.002 0.564±0.001 0.525±0.001 0.610±0.001

AWP 0.697±0.000 0.715±0.000 0.517±0.000 0.548±0.000 0.520±0.000 0.579±0.000
JLMVC 0.910±0.022 0.897±0.010 0.832±0.019 0.849±0.017 0.837±0.019 0.860±0.015

Yale (α =
0.7, λ =
0.05)

SSCbest 0.627±0.000 0.671±0.011 0.475±0.004 0.517±0.004 0.509±0.003 0.547±0.004
LRRbest 0.697±0.001 0.709±0.011 0.512±0.005 0.547±0.007 0.529±0.005 0.567±0.004
MLAP 0.727±0.010 0.751±0.014 0.580±0.021 0.606±0.020 0.589±0.020 0.624±0.036
DiMSC 0.709±0.003 0.727±0.010 0.535±0.003 0.564±0.010 0.543±0.012 0.586±0.009
LT-MSC 0.741±0.002 0.765±0.008 0.570±0.004 0.598±0.006 0.569±0.004 0.629±0.005
MLAN 0.558±0.008 0.590±0.004 0.273±0.008 0.330±0.002 0.257±0.004 0.463±0.006
ECMSC 0.771±0.014 0.773±0.010 0.590±0.014 0.617±0.012 0.584±0.013 0.653±0.013

t-SVD-MSC 0.963±0.006 0.953±0.008 0.910±0.010 0.915±0.007 0.904±0.005 0.927±0.007
HLR-M2VS 0.756±0.014 0.790±0.008 0.631±0.016 0.654±0.014 0.627±0.022 0.684±0.010

Kt-SVD-MSC 0.982±0.000 0.987±0.000 0.973±0.000 0.975±0.000 0.971±0.000 0.979±0.000
DMF-MVC 0.745±0.011 0.782±0.010 0.579±0.002 0.601±0.002 0.598±0.001 0.613±0.002

AWP 0.715±0.000 0.738±0.000 0.556±0.000 0.584±0.000 0.562±0.000 0.609±0.000
JLMVC 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000

ORL (α =
0.05, λ =
0.005)

SSCbest 0.765±0.008 0.893±0.007 0.694±0.013 0.682±0.012 0.673±0.007 0.764±0.005
LRRbest 0.773±0.003 0.895±0.006 0.724±0.020 0.731±0.004 0.701±0.001 0.754±0.002
MLAP 0.789±0.021 0.895±0.010 0.714±0.025 0.720±0.024 0.686±0.027 0.759±0.024
DiMSC 0.838±0.001 0.940±0.003 0.802±0.000 0.807±0.003 0.764±0.012 0.856±0.004
LT-MSC 0.795±0.007 0.930±0.003 0.750±0.003 0.768±0.004 0.766±0.009 0.837±0.005
MLAN 0.705±0.022 0.854±0.018 0.384±0.010 0.376±0.015 0.254±0.021 0.721±0.020
ECMSC 0.854±0.011 0.947±0.009 0.810±0.012 0.821±0.015 0.783±0.008 0.859±0.012

t-SVD-MSC 0.970±0.003 0.993±0.002 0.967±0.002 0.968±0.003 0.946±0.004 0.991±0.003
HLR-M2VS 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000

Kt-SVD-MSC 0.971±0.021 0.994±0.007 0.972±0.022 0.972±0.022 0.956±0.027 0.991±0.017
DMF-MVC 0.805±0.006 0.891±0.004 0.722±0.010 0.728±0.010 0.704±0.011 0.755±0.009

AWP 0.753±0.000 0.908±0.000 0.697±0.000 0.705±0.000 0.615±0.000 0.824±0.000
JLMVC 0.983±0.018 0.996±0.004 0.983±0.018 0.984±0.017 0.973±0.028 0.994±0.006

including 1024d intensity, 3304d LBP, and 6750d Gabor are
employed; CMU-PIE (http://vasc.ri.cmu.edu/idb/html/face/):
it consists of 5440 facial images of 68 subjects. Each image
is of size 64× 64 with a large variance. Following [50], three
types of features including 1024d Intensity, 256d LBP, and
496d HOG are used; Scene-15 [51]: it contains 4485 outdoor
and indoor scene images from 15 categories. Following [7],
three kinds of image features, including 1800d PHOW, 1180d
PRI-CoLBP, and 1240d CENTRIST are extracted to represent
Scene-15.

Baselines: Our proposed JLMVC is compared with twelve
state-of-the-art single-view and multi-view clustering meth-
ods. The competing methods are listed as follows: SSCbest

[20]: single-view clustering using the sparse regularizer (l1-
norm) to construct the representation matrix; LRRbest [19]:
single-view clustering using the nuclear norm to construct the
representation matrix; MLAP [33]: multi-view clustering by
concatenating representation matrices of different views and
imposing low-rank constraint to explore the complementarity;

DiMSC [52]: multi-view clustering with the Hilbert-Schmidt
Independence criterion; LT-MSC [6]: multi-view clustering
with the low-rank tensor constraint; MLAN [16]: multi-view
clustering with adaptive neighbors; ECMSC [23]: multi-view
clustering by simultaneously exploiting the representation ex-
clusivity and indicator consistency; t-SVD-MSC [7]: multi-
view clustering via tensor multi-rank minimization; HLR-
M2VS [8]: multi-view clustering via hyper-Laplacian regular-
ized multilinear multiview self-representations; Kt-SVD-MSC
[43]: multi-view clustering via robust kernelized multi-view
self-representations; DMF-MVC [29]: multi-view clustering
via deep matrix factorization; AWP [53]: multi-view clustering
via adaptively weighted procrustes.

Specifically, SSCbest and LRRbest are two representative
baselines for single-view clustering. Others are the multi-view
clustering baselines. LT-MSC, t-SVD-MSC, HLR-M2VS, and
Kt-SVD-MSC are low-rank tensor representation-based multi-
view clustering approaches. Kt-SVD-MSC is the kernelized
version of t-SVD-MSC. MLAN is graph-based multi-view
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TABLE III
CLUSTERING RESULTS (MEAN±STANDARD DEVIATION) ON WIKIPEDIA AND PROKARYOTIC.

Data Method ACC NMI AR F-score Precision Recall

Wikipedia
(α =
0.001, λ =
0.55)

SSCbest 0.561±0.001 0.527±0.002 0.418±0.001 0.481±0.001 0.491±0.001 0.471±0.001
LRRbest 0.554±0.001 0.523±0.001 0.417±0.000 0.479±0.000 0.490±0.000 0.468±0.001
MLAP 0.574±0.000 0.510±0.000 0.414±0.000 0.477±0.000 0.482±0.000 0.472±0.000
DiMSC 0.547±0.007 0.500±0.003 0.397±0.002 0.461±0.002 0.478±0.002 0.445±0.002
LT-MSC 0.532±0.003 0.496±0.005 0.407±0.005 0.471±0.005 0.480±0.004 0.461±0.006
MLAN 0.203±0.001 0.066±0.000 0.020±0.000 0.127±0.000 0.127±0.000 0.127±0.000
ECMSC 0.563±0.000 0.522±0.000 0.413±0.000 0.475±0.000 0.494±0.000 0.457±0.000

t-SVD-MSC 0.527±0.011 0.480±0.001 0.393±0.002 0.458±0.002 0.470±0.002 0.447±0.002
HLR-M2VS 0.577±0.000 0.513±0.000 0.417±0.000 0.480±0.000 0.485±0.000 0.475±0.000

Kt-SVD-MSC 0.573±0.002 0.538±0.002 0.443±0.002 0.502±0.002 0.513±0.002 0.492±0.002
AWP 0.573±0.000 0.543±0.000 0.434±0.000 0.497±0.000 0.493±0.000 0.501±0.000

JLMVC 0.587±0.000 0.552±0.000 0.462±0.000 0.520±0.000 0.527±0.000 0.513±0.000

Prokaryotic
(α =
0.001, λ =
0.1)

SSCbest 0.466±0.000 0.242±0.000 0.083±0.000 0.439±0.000 0.446±0.000 0.432±0.000
LRRbest 0.499±0.000 0.245±0.000 0.115±0.000 0.410±0.000 0.485±0.000 0.355±0.000
MLAP 0.583±0.000 0.243±0.000 0.203±0.000 0.479±0.000 0.546±0.000 0.436±0.000
DiMSC 0.395±0.001 0.070±0.000 0.053±0.000 0.346±0.000 0.441±0.000 0.284±0.000
LT-MSC 0.431±0.007 0.156±0.020 0.051±0.016 0.401±0.006 0.429±0.011 0.376±0.003
MLAN 0.712±0.002 0.387±0.003 0.425±0.003 0.618±0.002 0.728±0.002 0.537±0.002
ECMSC 0.432±0.001 0.193±0.001 0.078±0.001 0.383±0.002 0.457±0.002 0.329±0.001

t-SVD-MSC 0.523±0.000 0.197±0.000 0.137±0.000 0.486±0.000 0.474±0.000 0.500±0.000
HLR-M2VS 0.646±0.002 0.332±0.001 0.288±0.001 0.533±0.001 0.611±0.001 0.473±0.001

Kt-SVD-MSC 0.744±0.002 0.475±0.002 0.471±0.002 0.646±0.001 0.769±0.001 0.557±0.001
AWP 0.603±0.000 0.342±0.000 0.301±0.000 0.518±0.000 0.657±0.000 0.428±0.000

JLMVC 0.766±0.001 0.487±0.002 0.500±0.001 0.670±0.002 0.775±0.001 0.591±0.001
DMF-MVCC was crashed on these two databases.

clustering one. The source codes of all competing methods
are downloaded from the authors’ homepages. For single-
view clustering methods, we perform SSC and LRR on each
feature matrix independently and report the best clustering
results. For multi-view clustering ones, LT-MSC, t-SVD-MSC,
HLR-M2VS, and Kt-SVD-MSC are first performed to learn
the representation tensor Z , and then conduct the affinity
matrix S by averaging each frontal slice of Z , that is, S =
1
V

∑
v

(
|Z(v)|+ |Z(v)T |

)
. This means that they are performed

in two separate steps to obtain the affinity matrix. After that,
the spectral clustering algorithm [9] is carried out to obtain the
final clustering results. For fair comparison, our experiments
follow the same parameter settings of the original papers. For
SSC and LRR, we select the regularization parameter from
the interval [0.01, 10]; for MLAP, two free parameters are
searched from 0.001 to 1; for DiMSC, two free parameters are
chosen from [0.01, 0.03] and [20 : 20 : 180], respectively; the
trade-off parameter of LT-MSC is selected from 0.01 to 100;
for MLAN, one parameter is set to a random number between
1 and 30; three free parameters of ECMSC are set in [0.1, 1],
[0.1, 1], and 1.2, respectively; the trade-off parameters of t-
SVD-MSC and Kt-SVD-MSC are set within the range [0.1, 2]
and [0.001, 0.6], respectively; for HLR-M2VS, two parameters
are located within the ranges [0.01, 0.2] and [0.1, 0.9], respec-
tively; DMF-MVC adopts {[100, 50], [500, 50], [500, 200]} as
the sizes of the last layer and other parameters use the default
settings as recommended in [29]; AWP is parameter-free.

Evaluation metrics: Six widely used metrics are selected to
evaluate the clustering quality including accuracy (ACC), nor-
malized mutual information (NMI), adjusted rank index (AR),
F-score, Precision, and Recall. For each evaluation metric,

the higher value indicates the better clustering performance.
As we know, the spectral clustering algorithm uses the K-
means algorithm to obtain the indicator matrix for all methods
except MLAN, and different initializations may yield different
clustering results. Thus, we run 10 trials for each experiment
on all datasets and report their average performance with
standard deviations. Although MLAN does not use the K-
means algorithm, there exists one random parameter. Thus,
we repeat MLAN algorithm 10 trials.

B. Clustering performance comparison

The clustering performance comparison on all multimedia
datasets are reported in Tables II, III, and IV. The best results
are highlighted in bold and the second-best ones are underlined
in each table. From the results in these tables, we reach the
following conclusions:
• Generally speaking, the proposed JLMVC achieves the

best results on all datasets, except the ORL data where
JLMVC is the second best. They have verified the validity
of the proposed JLMVC. This is mainly because the
proposed JLMVC takes three aspects into one unified
model: 1) high correlation between the representation
tensor and affinity matrix; (2) the nonlinear structures in
real applications; (3) different contributions of each view
for the construction of the unified affinity matrix. (More
details can be found in Section IV-C-(3).) Take the Ex-
tended YaleB data as an example, the proposed JLMVC
improves around 1.4%, 0.4%, 2.1%, 1.7%, 1.6%, and
1.8% with respect to six measures over the second-best
method Kt-SVD-MSC which also exploits the kernel trick
to solve the nonlinear subspaces problem but learns the
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TABLE IV
CLUSTERING RESULTS (MEAN±STANDARD DEVIATION) ON COIL-20, CMU-PIE AND Scene-15.

Data Method ACC NMI AR F-score Precision Recall

COIL-20
(α =
0.001, λ =
0.001)

SSCbest 0.803±0.022 0.935±0.009 0.798±0.022 0.809±0.013 0.734±0.027 0.804±0.028
LRRbest 0.761±0.003 0.829±0.006 0.720±0.020 0.734±0.006 0.717±0.003 0.751±0.002
MLAP 0.738±0.020 0.825±0.009 0.685±0.023 0.701±0.021 0.688±0.027 0.715±0.016
DiMSC 0.778±0.022 0.846±0.002 0.732±0.005 0.745±0.005 0.739±0.007 0.751±0.003
LT-MSC 0.804±0.011 0.860±0.002 0.748±0.004 0.760±0.007 0.741±0.009 0.776±0.006
MLAN 0.862±0.011 0.961±0.004 0.835±0.006 0.844±0.013 0.758±0.008 0.953±0.007
ECMSC 0.782±0.001 0.942±0.001 0.781±0.001 0.794±0.001 0.695±0.002 0.925±0.001

t-SVD-MSC 0.830±0.000 0.884±0.005 0.786±0.003 0.800±0.004 0.785±0.007 0.808±0.001
HLR-M2VS 0.852±0.009 0.960±0.006 0.833±0.005 0.842±0.003 0.757±0.010 0.949±0.011

Kt-SVD-MSC 0.940±0.008 0.967±0.005 0.928±0.012 0.932±0.011 0.930±0.013 0.934±0.010
DMF-MVC 0.839±0.009 0.843±0.009 0.951±0.001 0.852±0.008 0.786±0.015 0.843±0.001

AWP 0.650±0.000 0.909±0.000 0.695±0.000 0.714±0.000 0.573±0.000 0.949±0.000
JLMVC 0.945±0.037 0.970±0.024 0.937±0.033 0.940±0.042 0.940±0.043 0.941±0.042

CMU-PIE
(α =
0.1, λ =
0.005)

SSCbest 0.495±0.011 0.694±0.006 0.259±0.013 0.273±0.013 0.207±0.015 0.403±0.007
LRRbest 0.527±0.009 0.673±0.011 0.330±0.014 0.341±0.017 0.290±0.016 0.415±0.011
MLAP 0.404±0.015 0.583±0.011 0.280±0.011 0.291±0.011 0.276±0.010 0.309±0.013
DiMSC 0.521±0.018 0.652±0.014 0.357±0.012 0.401±0.019 0.311±0.013 0.384±0.011
LT-MSC 0.602±0.010 0.725±0.007 0.455±0.013 0.464±0.013 0.425±0.017 0.510±0.010
MLAN 0.324±0.000 0.492±0.000 0.019±0.000 0.047±0.000 0.024±0.000 0.526±0.000
ECMSC 0.387±0.001 0.577±0.001 0.224±0.003 0.237±0.002 0.207±0.002 0.275±0.001

t-SVD-MSC 0.857±0.012 0.919±0.006 0.771±0.012 0.775±0.011 0.719±0.021 0.840±0.009
HLR-M2VS 0.770±0.011 0.852±0.010 0.670±0.018 0.675±0.017 0.627±0.020 0.732±0.019

Kt-SVD-MSC 0.901±0.010 0.964±0.005 0.888±0.011 0.889±0.011 0.865±0.012 0.915±0.011
DMF-MVC 0.534±0.015 0.707±0.006 0.360±0.018 0.371±0.017 0.309±0.021 0.465±0.009

AWP 0.408±0.000 0.622±0.000 0.225±0.000 0.240±0.000 0.183±0.000 0.351±0.000
JLMVC 0.918±0.014 0.970±0.003 0.904±0.011 0.905±0.011 0.881±0.016 0.932±0.007

Scene-15
(α =
0.001, λ =
1)

SSCbest 0.444±0.003 0.470±0.002 0.279±0.001 0.337±0.002 0.292±0.001 0.397±0.001
LRRbest 0.445±0.013 0.426±0.018 0.272±0.015 0.324±0.010 0.316±0.0105 0.333±0.015
MLAP 0.568±0.005 0.563±0.002 0.405±0.002 0.447±0.002 0.439±0.001 0.455±0.003
DiMSC 0.300±0.010 0.269±0.009 0.117±0.012 0.181±0.010 0.173±0.016 0.190±0.010
LT-MSC 0.574±0.009 0.571±0.011 0.424±0.010 0.465±0.007 0.452±0.003 0.479±0.008
MLAN 0.331±0.000 0.475±0.000 0.151±0.000 0.248±0.000 0.150±0.000 0.731±0.000
ECMSC 0.457±0.001 0.463±0.002 0.303±0.001 0.357±0.001 0.318±0.001 0.408±0.001

t-SVD-MSC 0.812±0.007 0.858±0.007 0.771±0.003 0.788±0.001 0.743±0.006 0.839±0.003
HLR-M2VS 0.878±0.003 0.895±0.005 0.850±0.003 0.861±0.005 0.850±0.008 0.871±0.010

Kt-SVD-MSC 0.984±0.000 0.966±0.000 0.967±0.000 0.969±0.000 0.971±0.000 0.968±0.000
DMF-MVC 0.526±0.004 0.525±0.002 0.369±0.001 0.414±0.004 0.399±0.005 0.430±0.004

AWP 0.574±0.000 0.577±0.000 0.412±0.000 0.460±0.000 0.394±0.000 0.551±0.000
JLMVC 0.988±0.000 0.975±0.000 0.975±0.000 0.977±0.000 0.979±0.000 0.975±0.000

representation tensor and affinity matrix in two separate
manners;

• The low-rank tensor representation-based MVC methods
(LT-MSC, t-SVD-MSC, HLR-M2VS, Kt-SVD-MSC, and
the proposed JLMVC) show better results than all single-
view clustering methods (SSC and LRR) in most cases.
This is mostly due to the fact that different features
characterize different and partly independent informa-
tion of the datasets. LRR and SSC exploit only partial
information, leading to unsatisfactory results especially
when multi-view features are heterogeneous. Whereas,
the low-rank tensor representation-based MVC can well
explore the high order correlations underlying multi-view
features;

• The graph-based multi-view clustering method, MLAN,
obtains unstable results. On Prokaryotic data, MLAN
achieves the similar performance with our JLMVC. How-
ever, it performs worse than those single-view clustering
methods on other datasets. The reason may be that the

graph-based clustering approaches usually construct the
affinity matrix on the raw multimedia features which may
be corrupted by noise and outliers;

• On ORL data, HLR-M2VS achieves better results than the
proposed JLMVC. The reason is that the manifold regu-
larization may be better to preserve the local geometrical
structure of ORL data than the kernel trick when handling
nonlinearity. However, HLR-M2VS is less robust on Yale
and Extended YaleB datasets. Specifically, in terms of
ACC and NMI, the leading margins of our JLMVC are
24.0% and 19.4% over HLR-M2VS on Extended YaleB,
respectively. On Yale, the improvement of JLMVC is
24.4% and 21.0%, respectively. Similar observations can
be obtained on Scene-15 and Prokaryotic datasets. This
indicates that, compared to the manifold-based methods,
the kernel-based methods may be a better way to handle
the nonlinear subspaces;

• The performance of MLAP degrades sharply on the
Extended YaleB data. Its performance is even worse
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Fig. 4. ACC and NMI values of LRR with all features on (1) Extended YaleB,
(2) Yale and (3) ORL datasets.

than those of the single-view clustering methods, i.e.,
LRR and SSC. However, it performs better than them
on other datasets. As stated in [7], the LBP and Gabor
features cause less discriminative representation than the
intensity feature due to large variations of illumination
as shown in the first group of Fig. 4. This indicates that
simply concatenating all features may fail to obtain a
good affinity matrix to describe the relationship among all
samples, especially when all features are heterogeneous.
This is the direct motivation why our model considers
different contributions of different features to construct
the affinity matrix.

C. Model analysis

In this section, we aim to give a comprehensive analysis
of the proposed JLMVC in Eq. (7), including the parameter
analysis, convergence analysis, and runtime.

(1) Parameter analysis: There are three parameters, i.e.,
α, λ, η in the proposed JLMVC. In all experiments, we
set η = 500. Thus, there are two free parameters which
need to be tuned. Actually, α and λ are used to balance the
contributions of the low-rank tensor term, noise term and
consensus term. For example, when the noise level of features
is high, α may be selected a large value. α and λ are selected
from the ranges [0.001, 0.005, 0.01, 0.05, 0.1, 0.3, 0.5, 0.7] and
[0.001, 0.005, 0.01, 0.05, 0.1, 0.3, 0.5, 0.7, 0.9, 1], respectively.
Here, the Yale and Extended YaleB datasets are selected
as two examples. Fig. 5 shows the ACC and NMI values
with respect to different combinations of α and λ. From this
figure, we can observe that when α is set to a relatively
large value, JLMVC can achieve the best results. An intuitive
interpretation is that there are large variations of illumination
on the Extended YaleB data.

(2) Computation complexity and empirical convergence
analysis: The proposed JLMVC consists of six subproblems.
The main computation complexity of JLMVC is to update Y
and P since updating other variables contains only the matrix
addition and scalar-matrix multiplication. The total computa-
tion complexity of Y subproblem is O(2V n2log(n) + V 2n2)
since it needs to compute the FFT, inverse FFT and singular
value decomposition. For updating P , it includes V indepen-
dent subproblems as shown in Eq. (16). Each subproblem takes
O(rn2) for the vector-matrix multiplication, where r is the
rank of K(v). Thus, the computation complexity of JLMVC
is O(2V n2log(n) + V 2n2 + V rn2).
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Fig. 5. ACC and NMI values of JLMVC with different combinations of α
and λ on Yale (Two top figures) and Extended YaleB (Two bottom figures)
datasets.

0 10 20 30 40 50

Iteration

0

1

2

3

4

5

E
rr

o
r

||I - Z - P||

||Z - G||

0 10 20 30 40 50

Iteration

0

0.2

0.4

0.6

0.8

1

A
C

C
 a

n
d
 N

M
I

ACC

NMI

Fig. 6. Empirical convergence (Left), ACC and NMI values (Right) versus
iterations on Extended YaleB data.

The empirical convergence of JLMVC on Extended YaleB
dataset is shown in Fig. 6. The x-axis denotes the number
of iterations, while the y-axis represents the errors defined in
Eq. (24). We can see that, after several iterations, the errors
witness a quick drop until a stable value. In all experiments,
the proposed JLMVC can reach the smallest residual within
50 iterations. To further investigate the empirical convergence
of JLMVC, Fig. 6 also reports the ACC and NMI values with
respect to iterations on Extended YaleB dataset. Before the first
10 iterations, JLMVC does not reach a meaningful accuracy.
But after that, JLMVC achieves promising ACC and NMI
values higher than those of all competing methods except
Kt-SVD-MSC. This shows that the proposed JLMVC is an
excellent multi-view clustering method.

(3) The effect of Z and S: The proposed JLMVC
achieves the joint learning of the representation tensor Z
and affinity matrix S. However, most existing MVC meth-
ods follow two separate steps to construct Z and S. To
investigate the effect of Z and S, we perform a test by
setting λ = 0. In this test, we simply obtain Z and then
construct S = 1

V

∑
v

(
|Z(v)|+|Z(v)T |

)
. This simple variant of

JLMVC is denoted as JLMVC-Z . Table V reports clustering
results of JLMVC and JLMVC-Z . It is easy to see that
JLMVC achieves superior clustering results over JLMVC-Z
in all cases. The average improvement of JLMVC is around
17.06% and 16.23% over JLMVC-Z with respect to ACC
and NMI, respectively, indicating that construction of Z and
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TABLE V
PERFORMANCE (ACC/NMI) OF JLMVC AND ITS VARIANTS ON DIFFERENT DATASETS.

ACC/NMI
YaleB Yale ORL Prokaryotic Wikipedia COIL-20 CMU-PIE Scene-15 Average

JLMVC 0.910/0.897 1.000/1.000 0.983/0.996 0.766/0.487 0.587/0.552 0.945/0.970 0.918/0.970 0.988/0.975 0.8871/0.8559
JLMVC-Z 0.532/0.504 0.386/0.485 0.977/0.995 0.604/0.330 0.544/0.446 0.919/0.955 0.786/0.867 0.984/0.967 0.7165/0.6936
JLMVC-nk 0.534/0.468 0.932/0.951 0.966/0.993 0.722/0.379 0.584/0.521 0.894/0.935 0.891/0.955 0.978/0.963 0.8126/0.7706

TABLE VI
AVERAGE RUNNING TIME (IN SECONDS) ON ALL DATABASES.

Data MLAP DiMSC LT-MSC MLAN t-SVD-MSC HLR-M2VS Kt-SVD-MSC JLMVC
Yale 35.06 2.85 17.98 0.89 8.24 5.83 24.74 8.96

YaleB 250.42 30.54 128.15 4.85 54.19 54.54 371.92 68.57
ORL 128.32 13.16 65.28 1.60 34.85 23.66 22.55 19.68

Wikipedia 75.49 22.74 28.67 3.35 5.46 14.18 347.14 40.53
Prokaryotic 65.51 17.65 29.34 2.89 7.32 16.02 35.72 32.18

COIL-20 1826.51 617.29 874.91 31.03 169.10 314.16 344.36 322.98
CMU-PIE 26683.28 24281.78 14645.16 6272.19 6344.51 10677.92 32986.18 13825.17
Scene-15 13825.53 12449.36 7705.87 3318.62 3429.46 6274.69 16915.99 7680.65

S simultaneous can boost the clustering performance.
(4) Ablation study on the kernel trick: To investigate

the effect of the kernel trick, we also carry out the model
in Eq. (3), denoted as JLMVC-nk. Like JLMVC, JLMVC-
nk also learns the representation tensor and affinity matrix
simultaneously without the kernel trick. This means that the
affinity matrix is constructed from the the original multimedia
data (usually nonlinear separable). The ACC and NMI values
of JLMVC-nk are reported in the last row of Table V. One
can see that JLMVC achieves better clustering results than
JLMVC-nk in all cases. A typical example is the Extended
YaleB dataset whose multiple features are diverse as shown
in Fig. 4. This indicates that the kernel trick can handle the
nonlinearity and boost the multi-view clustering performance.

(5) Runtime: Since the computation time of a method
is also an evaluation factor, we give a runtime comparison
of the proposed JLMVC and several competitors. Table VI
reports the runtime comparison results. All experiments are
implemented in Matlab 2016a on a workstation with 3.50GHz
CPU and 16GB RAM. From Table VI, the methods with
the average time from low to high are MLAN, t-SVD-MSC,
HLR-M2VS, JLMVC, LT-MSC, DiMSC, MLAP, and Kt-
SVD-MSC. MLAN costs the shortest processing time and
the proposed JLMVC belongs to the middle-ranking group.
All methods except for MLAN should compute the singular
value decomposition and matrix inversion. This leads to a high
computation cost. Although MLAN is the most efficient one,
it has an unstable performance. The reason is that MLAN uses
the raw data to learn the similarity matrix and the raw data are
easily contaminated by noise. Other methods impose the low-
rank constraint on the representation matrix (or tensor) and
use the sparse regularizer to remove noise. They can construct
a reliable similarity matrix.

V. CONCLUSIONS

In this paper, we proposed a novel method called JLMVC
to solve the multi-view clustering problem, based on the low-
rank tensor representation and “kernel trick”. In JLMVC,

instead of capturing a low-rank representation matrix among
all views, the tensor singular value decomposition-based tensor
nuclear norm was used to learn the representation tensor so
as to explore the high order correlations among different
views. Using the kernel trick, the original multimedia data
was implicitly mapped from the input data space into a new
feature space to overcome the difficulty of nonlinearity in real
applications. To make full use of the high correlation between
the representation tensor and affinity matrix, the proposed
JLMVC achieved the joint learning of the representation tensor
and affinity matrix. Thus, the learned affinity matrix has
the potential to boost the clustering performance which was
demonstrated by extensive experiments on eight multimedia
datasets. Our future work will design a fast and efficient multi-
view clustering method. One possible solution is using the
Frank-Wolfe algorithm to reduce the computation complexity
of the singular value decomposition.
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